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OSCILLATIONS OF NONHOMOGENEOUS CYLINDRICAL SHELL
STIFFENED BY CROSSED BARS WITH MEDIUM
In investigation of dynamic rigidity charcateristics of a nonhomogeneous
cylindrical shell stiffened by crossed bars, the account of nonhomogeneity

of material distribution and external medium effect was carried out by means
of three-dimensional functional.
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Introduction. In the paper, eigen oscillations of a cylindrical shell
stiffened by crossed nonhomogeneous bars in thickness i.e. of a solid
medium system were studied.

For taking into account the nonhomogeneity in thickness of the cylindrical
shell, two different methods may be used: by introducing sandwich [1] and
nonhomogeneity function. In the paper, the nonhomogeneity was considered
by accepting the Young's modulus and density of the material as a coor-
dinate function changing in thickness.

Taking into account the nonhomogeneity in thickness of smooth
cylindrical shells the parametric oscillations were studied in the papers [2—4].
Using the variation principle, for finding the oscillations frequency of the
smooth cylindrical shell with medium, the frequency equation was
constructed, its roots were found, and characteristic curves were constructed
on force-frequency plane.

Problem statement. For taking into account the nonhomogeneity of the
cylindrical shell in thickness we use a three-dimensional functional. In this
case the total energy of the cylindrical shell is as follows:
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For taking into account nonhomogeneity, we accept the Young's modulus

and the density of the material as a coordinate function changing

in thickness [1]: E = E (Z) P = P(Z) . It is assumed that the Poisson's
ratio is constant. In this case the stress-strain relation is written as follows:
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If we take into account expressions (2)—(3) and the equality
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The total energy of longitudinal bars and rings is:
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The influence of medium on the cylindrical shell is presented
by the external forces Ay Ay 0z - The work performed by these forces

in location of the points of the shell is

X127

Ay = J.I qxu+qy9+qzw)dxdy
00

The total energy of the system under consideration is
W=V +V, +V, + Ay (6)

In expressions (1)—=(6) u,$w are displacements of the shell, u;,$,w

are the displacements of the points of longitudinal bar, uj,.9j,wj

are the displacements of the points of the ring, E; is the modulus of elasiticity
of the longitudinal bar, F is the area of cross-section of the longitudinal bar, G;
is the modulus of elasticity of the longitudinal bar at shear, 1y;,lip; are inertia
moments of the cross section of the longitudinal bar, k; is the quantity
of longitudinal bars, E,v are the modulus of elasticity of the bar material and
the Poisson's ratio, respectively, R,h are the radius and thickness of the

cylindrical shell, respectively, E j is the modulus of elasticity of the ring, FJ-
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is the square of the cross section of the ring, 1, 15,1y, are the inertia
moments of the cross section of the ring, k, is the number of rings, Oy, 0y 9,

are the pressure force components influencing on the cylindrical shell from
" i 1 h' Z'dz
medium, and p; = jp(z)z'dz, —= j—
Ei E(Z)
-h -h
It is assumed that the following rigid contact conditions between the shell
and rings are satisfied:
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The system of motion equations of the medium in cylindrical coordinates,
by means of the Lame system of equations is written as follows [5]:
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Here Sx:Sy: Sy are the displacement vector components of the medium,

As, 15 are the Lame coefficients, pg is the density of the medium, X, r,¢

are longitudinal, radial  an circular  coordinates respectively,

and a = fﬂﬁz% F

The volumetric extension 6 and the components wy, @, o, are calcu-
lated by the following expressions:
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The stresses in the medium are expressed by the displacements
Sx1S,, Sy as follows:
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Problem solution. When studying the oscillations of a visco-elastic
cylindrical shell stiffened by bars with medium, we consider two cases:
a) inertial influence of the medium on the oscillation process is weak;
b) the inertial influence of the medium can not be ignored when investigating
the oscillation prosess.

In the case a) the displacements of the medium will be as follows:
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In the case b) they are:
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The system of motion equations (8) was complemented with contact
conditions. We will assume that the tangential surfaces of the cylindrical shell
and medium can be changed with respect to each other and in the deformation
process they are not separated from each other. In this case, in the sections
X=X and X=X, the conditions oy, =0; sy =s, =0 should be fulfilled.

The equality condition of normal components of displacements is:
sr =w(r=R). (12)
The equality conditions of pressure forces are:
dx =0, gy =0, g, =—0y (r=R). (13)

Show the expressions of pressure components g, in the following way:

q, = q(O)C cos ngsin kxsin at. (14)

z
By means of contact conditions (9) and (10), and the system of motion

equations of the medium, for q§°) we get the expression in the case a):
0 _ A 1{ 12 ) 1y (k) #2671, () K2
In(k ;+2n2k ( *|;1(k*)—(k*2+n2)|n(k*))k*2x
(K] (15)
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In the expressions (10), (11), (15), (16) A, Bs, Cg are the unknown

constants, Kk, n, y,, 54 are the wave numbers, |, is the modified, n order,

first kind Bessel function, y2=k*-z2, W2 =k?>—1?, K =kR,

is the unknown frequency.
In the expression (6), the variational quantities
are U, 9,wT,T,,M,M,,S,H . Determine  the  stationary  value

of the functional (6). For that we use the Ritz method. We will look for the
unknown quantities in the form:

u= cos”TXsin(kgo)(uO cos ot + Uy sin et );

. 7TX .
19:SInTCOS(k(p)(SOCOSa)t+3_~|_Slna)t);
X ,
w:sml—sm(k(p)(wocoswt+wlsma)t);
X ,

T, =sin Tsm(k(p)(Tlo cos ot +Tyg sinot);
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T, = cos”TXcos(k<p)(T20 coswt + Ty sinwt);
X :
S :sstm(kq))(Slo cosat + Sy sinat);
L TX .
M, =sin I—sm(k(p)(Mlo coswt + My sinat); 17)
X . :
M, = cos|—3|n(k(p)(M20 cos ot + My Sinat);
X .
H =cosTcos(k¢)(H10 cosot + Hygsinat).
If we substitute the expressions (12) in the functional (6), we get
afunction  dependent on the  variables Ug,Up, S, &, W, W

T0: 1. To0: To1:$10:S11: Myg,.Mq2,Mog, Moo, Hig,Hy1.  The  stationarity
condition of the obtained function is determined from the following system:

1)6_‘]:0; 2)6_‘]:0; 3)8_‘}:0; 4)6_J:0;
oug Oouy o% oY
5)1;0; 6)&;0;7)220; 8)1:0; (18)
oWg oWy Ty ot
g)i =0; 10)2 =0; 11)i =0; 12)i =0.

As the system (18) is homogeneous, for the existence of its nontrivial
solution, the principal determinant should be equal to zero. As a result, we
get the following frequency equation:

det"aij ||=o i, j=118. (19)

Equation (19) was investigated by numerical method. For the parameters
of the medium and shell, the following values were taken:

*

h =%=o,25~1o*2;v=0,3; E;=E=FE =6,67-10°H/m* a=0,5;
Pj =0,26~10_2N~sm2/m2;a=2,25at;at:308m/sm;
Ep =E:pp = pj. hj =1,39mm; F; =5,75mm?;

Iy

27R%h

J,; =19,9mm*; =0,23-30°°; Jy j =0,48mm*.

Fi —1 Iyi -6
) _01591.101: v =0,3: -0,8289-10°%:
27Rh 27R%h
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L .
pi =0,26-10*N -sm” /m?; —2— =0,1326-10";
27R°h

i 2
- =0,5305-10°°; iy =0,01375R; G = —.
2zR”h 2+)

We considered two cases of the change of the nonhomogeneity function:

linear E(z)=Ey {1+ a[%ﬂ p(2)=py {1+ a(%ﬂ and  parabolic

2 2
E(z)=Ey {1+a(§j } p(2)= po 1+a(%} . Here the Young's modulus,

a is the nonhomogeneity parameter. Note that in the case of linear function
lo|<1, in the parabolic principle case « is any number,

and @ = \/(1—v2)p0R2w2 /E .
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Fig. 1 — Dependence of the frequency parameter on the amount of rings:
1 -the linear law; 2 — the parabolic law

The results of calculations were given in Fig. 1 for different k; in the form

of dependence of the system oscillation frequency on the amount of rings.
The lines of nonhomogeneity curves correspond to curves 1, parabolic
change cases of nonhomogeneity laws to curves 2.

Conclusions. The calculations show that the oscillation frequencies
corresponding to linear case of nonhomogeneity laws are greater than
the oscillation frequencies corresponding to the case of parabolic change.
As it is seen from the Fig. 1, by increasing the number of rings, at first
the oscillation frequencies of the system increase and after some number
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of rings decreases. This is explained by the fact that by increasing
the number of rings, their mass increases and inertial effect on the oscillation
process strengthens. Furthermore, the oscillation frequencies of the system
increases due to increase of the number of longitudinal bars.
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@. C. Jlamighos, 0-p pis.-mam. Hayk, P. A. IckaHOepos, d-p mam. Hayk,
E. H. Xaninosa

KONMBAHHA HEOOQHOPIAHOI LMNIHAPUYHOI OBOJIOHKM,
NOCUNEHOI NEPEXPECHUMW CACTEMAMMW PEBEP,
CYMICHI 3 CEPEOOBULLEM

MNpoBeaeHo LOCTiAXEHHSA AVHaMiYHUX YKOPCTKICHNX XapaKTepucTukK
HEOAHOPIAHWUX LMNIHOPUYHMX OOGONOHOK, MOCUIIEHUX MepexpecHMMU cucTteMamm

pebep, BUKOPMCTOBYHOYMN TPUBMMIPHUI byHKLiOHAN 3 ypaxyBaHHAM HEOQHOPIAHOCTI
po3nopainy matepiany Ta BNAMBY 30BHilULHLOIO cepefoBMLLA.

Kmro4doei cnoea: mpusumipHull ¢hyHKUiOHas, HeoOHOpIOHicmb, pidke cepedosuule,
sapiauitiHull MpuHyur.

@. C. Jlamugpos, 0-p ¢pus.-mam. Hayk, P. A. ickaHOepos, 0-p mam. Hayk,
E. H. Xanunoea

KONEBAHUA HEOOHOPOOHOW LIMNUHOPUYECKOW OBOJIOYKM,
NOAKPEMJIEHHON NEPEKPECTHLIMU CUCTEMAMMW PEGEP,
COBMECTHbIE CO CPEJOMN

MpoBeaeHo uccnegoBaHMe  OUHAMUYECKUMX  XKECTKOCTHBIX  XapaKTepuCTUK
HeoOAHOPOAHbIX UUIMTUHOPUYECKUX 050]10'-IeK, YCUIneHHbIX nepEKp§CTHbIMM cucrtemamum

p€dGep, wucnonb3ysi TPEXMepPHbIN (YHKUMOHaN € YYETOM HEOAHOPOAHOCTU
pacnpegeneHus MaTepuana u BNUSAHUSA BHeLLHeW cpeabl.

Knroyesble crioea: mpexmepHbIl hyHKUUOHal, HeoOHOPOOHOCMb, Xudkasi cpeda,
8apuayUOHHbIU MPUHYUr.
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