I[MTPOBJIEMU OBLII/ICJHOBAJ:[JBHOT MEXAHIKHN ISSN 2079-1836
I MITHOCTI KOHCTPYKLIN 2019, eun. 29

UDC 539.3
F. S. Latifov, Dr. Sci. (Phys.-Math.), Z. M. Badirov

OSCILLATION OF ANISOTROPIC
INHOMOGENEOUS CYLINDRICAL SHELL
WITH LIQUID SUPPORTED BY CROSS-RIBS

The free oscillation of an anisotropic inhomogeneous rib of a cylindrical shell
supported by cross-systems of edges and in contact with a moving fluid is
investigated. Using the Hamilton — Ostrogradsky variational principle, a system of
equations of motion supported by cross systems of ribs, non-uniform in thickness
by an anisotropic cylindrical shell in contact with a moving fluid, was constructed.
To take into account the heterogeneity of the shell material in thickness, it is
assumed that the Young's modulus and density of the shell material are functions of
the normal coordinate. Frequency equations are constructed and implemented
numerically. Characteristic curves of dependence are built.

Keywords: reinforced shell, variational principle, fluid, free oscillation, anisotropic
shell.

Introduction. When designing modern devices, machines and struc-
tures, an important role is played by the calculations for the stability, oscilla-
tion and strength of thin-walled elements of the shell-type structures in con-
tact with the medium. Such structures can be in contact with a liquid and be
subjected not only to static loads, but also to dynamic ones. To give greater
rigidity of the shell are supported by various ribs. However, the behavior of
inhomogeneous anisotropic thin-walled structural elements with ribs, taking
into account their discrete location, the influence of the fluid has not been
adequately investigated. Therefore, the development of mathematical mod-
els for studying the behavior of reinforced inhomogeneous anisotropic shells
that most fully take into account their work under dynamic loads, and con-
ducting studies of stability and oscillations based on them, as well as the
selection of rational parameters of structures in contact with a liquid, are
urgent tasks.

We note that the study of free vibrations of ribbed isotropic homogeneous
cylindrical shells filled with flowing fluid is described in [1, 9]. The effects of
the number of ribs, their rigidity, fluid flow velocity, various mechanical, phys-
ical, and geometric dimensions of the shell on the natural vibration frequen-
cies and the optimization parameter of a circular ribbed cylindrical shell are
studied. The works [4, 5] are devoted to the study of the free oscillation of an
isotropic inhomogeneous rib of a cylindrical shell supported by cross sys-
tems of edges in contact with a moving fluid. Using the Hamilton — Ostro-
gradsky variational principle, systems of equations of motion supported by
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cross systems of ribs, non-uniform in thickness by an anisotropic cylindrical
shell in contact with a moving fluid, are constructed. The results of an expe-
rimental study of the effect of reinforcing ribs and attached solids on the
frequencies and forms of free vibrations of thin elastic structurally inhomoge-
neous shells are presented in [3]. In the papers [6, 7], using the asymptotic
method, the frequency equations of smooth cylindrical shells filled with liquid
were constructed, approximate frequencies of the equation and simple cal-
culation formulas were obtained, which allow finding the values of the mini-
mum natural frequencies of the oscillations of the considered system. Here,
the forced vibrations of a reinforced shell filled with a liquid are investigated,
and the amplitude - frequency characteristics of the considered oscillatory
processes are determined. The works [10 — 12] are devoted to the study of
parametric oscillations of a non-linear and non-uniform in thickness rectili-
near rod in a visco-elastic medium with the use of the Pasternak contact
model. The effects of the main factors - the elasticity of the base, the dam-
age of the material of the rod and the shell, the dependence of the shear
factor on the oscillation frequency on the characteristics of the longitudinal
vibrations of the points of the rod in a visco-elastic medium are studied. In all
the cases studied, the dependences of the zone of dynamic stability of vibra-
tions of a rod in a visco-elastic medium on the parameters of the structure on
the load-frequency plane are plotted.

Formulation of the problem. Anisotropic inhomogeneous ribbed shell is
considered as a system consisting of its own shell and rigidly connected
edges along the lines of contact. It is assumed that the stress-strain state of
the shell can be completely determined in the framework of the linear theory
of elastic thin shells, based on the Kirchhoff — Love hypotheses, and the
theory of Kirchhoff — Clebsh curvilinear rods is applicable to the calculation
of the ribs. The coordinate system is chosen so that the coordinate lines
coincide with the lines of the main curvatures of the middle surface of the
shell. It is assumed that the edges are placed along the coordinate lines, and
their edges, like the edges of the shell, lie in the same coordinate plane. In
addition, it is assumed that all edges form a regular system. A regular sys-
tem of longitudinal and annular ribs is understood to be such a system in
which the stiffness of all the ribs, their mutual distances are equal, and the
distance from the edge of the shell to the nearest edge to it is equal to the
distance between the ribs.

The deformed state of the shell can be determined through three compo-
nents of the displacements of its middle surface «,3 and w. In this case,

the angles of rotation of normal elements ¢,,¢, relative to the coordinate
lines y and x are expressed through w and 3 with the help of dependencies

__ow __[ow. 3
D1 axa () 5:)/ R )

where R — the radius of the middle surface of the shell.
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To describe the deformed state of the ribs, in addition to the three com-
ponents of the displacements of the centers of gravity of their cross sections
(uj,Sj,wj first transverse rod u;,9;,w; of the longitudinal rod), it is also

necessary to determine the twist angles ¢,,;and ¢y, .

Taking into account that, according to the accepted hypotheses, there is
a constancy of radial deflections along the height of the sections, as well as
the equality of the corresponding twist angles resulting from the rigid connec-
tion of the ribs to the shell, we write the following relations:

up (x) = u(x, y;) +hioy(x,;); 9; (%) = 9(x, yi) + By p (x, ;)
w;(x) = w(x, ;); 9 =01 (x,3:);

Phpi (X) = 92 (x, ;) uj(y)=u(x;,y)+h;o1(x;,»);
(X)) =3(x;, »)+hjea(x;,y);  wi(x)=wlx;,»);
Q;=0(x;,»); Phpi (X) = @1(x 1, »).

Here h, =0,5h+H], h;=0,5h+H}, h— shell thickness, H; and H-

distance from i -th longitudial and ; -th cross rib to shell surface, x; and y;
— interface line coordinates of ribs with shell, ¢; ¢z,; and ¢;,¢;, —angels

of bending and twisting of cross-section of longitudial and transverse ribs
respectivel.

Regarding external influences, it is assumed that the surface loads acting
on the ribbed shell from the liquid can be reduced to the components dx-4y

and ¢, applied to the middle surface of the shell.

Differential equations of motion and natural boundary conditions for a
transversely supported orthotropic cylindrical shell with a fluid are derived
from the Ostrogradsky — Hamilton variational principle. To do this, we first
write down the potential and kinetic energy of the system.

To take into account the heterogeneity in thickness of the cylindrical
shell, we will proceed from the three-dimensional functional. In this case, the
total energy functional of a cylindrical shell has the form

h)2 2 2 2
1 ou 09 ow
V== + + + — | +| = | +|—| |dxdvdz (1
2[[}{/2[511511 02282 +012€12 P(Z)[atj [atj [&j J lydz (1)

There are various ways to account for the heterogeneity of the shell
material. One of them is that the Young's modulus and the density of the
shell material are accepted as functions of the normal coordinate z: £ = E
(z), p=p (2) [8]. It is assumed that the Poisson’s ratio is constant. In this
case, the ratio of strain-stress is:

0;1=b1(2)e11+b;5(2)e55, ©2=b;y(2)e111Drr(2) €35 G 12=bss(2)e2; (2)
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Taking into account (2), (3) and

07 o2 +(2) o2 Jw-
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in (1), it can be written down

U (s 2 s _ _
V= Eff{bn €11 +2b1281182p +2by€12827 +2b16E1 1812 +

2 2 (4)
Ou o9 ow
+hyy5, +b66812}dxdy+ff [[ at) +(5J +( alj ]dxdy,

. 2 . h2 _hp2
here b= [ by(z)dz b= [ ba(2)ds  byp= [ by(z)dz
—h/2 —h/2 —h/2
.2 E voEy(2)  ViEs(z
b= | bio()des @)= (- 288 _nBe),
)2 Viva 1V2 1V2
b, (z)—lEZ(Z) i bge(2)=Gip(2) =G(z)— main elastic modules of
Viva
h.
orthotrop material, p = .[ p(z)dz .
—h

The expressions for the potential energy of the elastic deformation of the
longitudinal and th transverse ribs are as follows [9]:

L 2 2V 2q ) so V2
= l.[ E‘lp; % +Eini a_v;l +EiJzi 0 921' + Ginpi (pk‘pl dx;
2 0 Ox 0ox ox ox
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The kinetic energies of the ribs are written as [2]:
2 2 2
) Jini [ OPwpi
K PZF I [814 j [89 j +[%J n Kpi (pk'pl ;
ot ot ot F ot
(6)

20 (ou, V¥ (09, V (0w, e (000 )
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i J
In expressions (4) and (6), F;,J.;,J,;,Jy,; — the area and moments of
inertia of the cross-section of the longitudinal rod, respectively, about an axis
Oz and an axis Oy parallel to the axis and passing through the center of
gravity of the section, as well as Fi,J2.d
ing torsion; similar values for the transverse rod; and E;,G; — the modules

Jipj — its moment of inertia dur-

of elasticity and shear £ j,G ; of the material of the longitudinal and trans-
verse rods, respectively, p;,p; — of the density of the materials from which

the longitudinal and transverse rods are made.

The potential energy of external surface loads acting from an ideal fluid
applied to the shell is defined as the work performed by these loads when
the system is transferred from a deformed state to an initial non-deformed
state and is represented as

L2xw

Ay ==[ [ g wixdy. (7)
00

The total energy of the system is equal to the sum of the energies of the
elastic deformations of the shell and transverse ribs, as well as the potential
energies of all external loads acting from an ideal fluid

k k
J=V+Z2:(Hj+Kj)+le(Hi+Ki)+A0. (8)
i=1

Jj=1

here k; —is the number of longitudinal, &, — is the number of transverse ribs.
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Assuming that the main flow velocity is equal U and the deviations from
this velocity are small, let us use the wave equation for the potential ¢ of

perturbed velocities along [13]

2~ 2~ 2~
8| L2y T8 2 00 | ©)
ag \ o Raogot R*0E

The expression of the total energy of the system (8) and the equation for
the motion of a fluid (9) are complemented by contact conditions. On the
contact surface of the shell - liquid, the continuity of radial velocities and
pressures is observed. The condition of impermeability or smoothness of
flow around the shell wall is [13]

| _%¢
"r=R o

=—[moa—W+Ua—WJ. (10)
r=R oy Rog

Equality of radial pressure from the liquid to the shell:
4z = ~Pr=r- (11)

If in (9) and (10) we substitute U = 0, then we obtain the equation of mo-
tion and the condition of impermeability or smoothness of flow around the
shell wall for a fluid at rest. The frequency equation of a ribbed inhomogene-
ous orthotropic shell with a flowing fluid is obtained on the basis of the prin-
ciple of stationarity of the Ostrogradsky — Hamilton action

W =0, (12)

p

where W = J.Jdt is the Hamilton action, ¢ and ¢" are given arbitrary points
y

in time.

Complementing the contact conditions of the total energy of system (8),
the equations of motion of a liquid (9) arrive at the problem of natural oscilla-
tions supported by a cross-system of ribs of a thickness that is non-uniform
in thickness of an orthotropic cylindrical shell with a flowing fluid. In other
words, the problem of natural oscillations, supported by a cross-system of
edges, of an inhomogeneous orthotropic cylindrical shell with a flowing fluid,
reduces to the simultaneous integration of expressions for the total energy of
system (8), the equation for fluid motion (9) when conditions (9) and (10) are
satisfied their contact.

Problem solving. The potential of perturbed speeds ¢ are looking for in
the form

®(&7.0,1) = f(r)cosngsinyEsinmyt; . (13)
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In expression (8), the variable quantities are u, %, w,. These unknown
values are approximated as follows:

X . .

U= cosTsm ksinot;
. TX .

$=9 s1nTcosk(ps1n0)t; (14)
. TX . .

W =W sin Tsm k@ sin ot.

Substituting (14) into (8) after integration, we obtain a function of the va-
riables ug, 9y, wp. The stationary value of the function obtained is deter-
mined by the following system:

8140 880 6‘w0
Nontrivial solution of the system of linear algebraic equations (15) of the
third order is possible only in the case when w; — the root of its determinant.
The definition ®; reduces to a transcendental equation, since o;it is in-
cluded in the arguments of the Bessel function

deta; =0, i,j=173. (16)
Numerical results. The frequency equation (16) is solved numerically.
R=160m; L=800mm; h=0,45uv; E;=E; =6,67-10"1a;
ay =1430m/ cex; P;=pi =7,8 2/em’ , F =5,75MM2; Ixj=19,9MM4;
Iy,

2L _),5305-107°;

Lip =048 v =0,11; vy =0,19; -
T

I, . .
o~ =0,8289-107%; L=0,1591~104; J—Z’3=0,13-10*6.
2nRh 2nRh 2R h

Two types of laws of variation of heterogeneity are considered
- linear Ey(z)=E (1+az/h); Ey(z)=E,(1+Bz/h); p(z)=py(1+az/h);
- parabolic £ (z)= £ (1+oc(z/h)2); Ey(2)=E, (1+[3(z/h)2);

p(z)=py (l+0c(z/h)2).
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Here, o,p are the heterogeneity parameters. Note, that with a linear law
change, |o|<1, |B|<1, with a parabolic change, o,f- are arbitrary. The
counting results are shown in Fig. 1 and Fig. 2.

o, 4 k=20

0,02 0.04 0,06 0,08

Fig.1 — 3aBucumMocTb napameTpa 4acToT Kone6aHum OT CKOPOCTU XKUAKOCTU:
1 — NUHEeWHbIN 3aKOH, 2 — napabonnyeckumn 3akoH

| | | T %
10 15 20 25 1

Fig. 2 — The dependence of the frequency parameter on the number of longitudinal
edges: 1 - uniform shell, 2 - linear law, 3 — parabolic law

In Fig. 1 shows the dependences of the frequency parameter o, on the

relative flow velocity U™ for various laws of variation in heterogeneity across
the shell thickness, and for different ratios E;/E,. It is seen that the in-
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crease in speed leads to a decrease in frequency. Note, that U* =0 corres-
ponds to the resting fluid.
In Fig. 2 illustrates the effect of the number £; of longitudinal ribs on the

parameters of the oscillation o, frequency of the considered system. It is
seen that with & an increase in the parameters of the frequency of oscilla-
tion o, of the system first increase, and then at a certain value %, they begin
to decrease. This is because, with an increase &; in the weight of the rods, it

increases and leads to a significant influence of their inertial properties on
the oscillation process. Comparisons of the above graphs show that taking
into account inhomogeneity leads to a decrease in the values of the natural
frequencies of the considered system compared to the natural frequencies of
the same system when the shell is homogeneous. In addition, with a de-
crease in the ratio E,/E, of the oscillation frequencies of the considered

system, it also decreases compared to the natural frequencies of oscillations
of the same system when the shell is isotropic.

Conclusions. The free oscillation of an anisotropic inhomogeneous rib of
a cylindrical shell supported by cross-systems of edges and in contact with a
moving fluid is investigated. Using the Hamilton — Ostrogradsky variational
principle, a system of equations of motion supported by cross systems of
ribs, non-uniform in thickness by an anisotropic cylindrical shell in contact
with a moving fluid, was constructed. To take into account the heterogeneity
of the shell material in thickness, it is assumed that the Young's modulus
and density of the shell material are functions of the normal coordinate. In
the study of free oscillations, supported by cross systems of ribs, anisotropic
cylindrical shell inhomogeneous in thickness, in contact with a moving fluid,
two cases are considered: a) the fluid inside the shell is at rest; b) the fluid
inside the shell moves at a constant speed. In both cases, frequency equa-
tions are constructed and implemented numerically. In the process of calcu-
lations, linear and parabolic laws are adopted for the inhomogeneity func-
tion. Characteristic curves of dependence are built.
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YAK 539.3
@. C. Jlamigpos d-p ¢pis.-mam. Hayk, 3. M. badipos

KOJIMBAHHA A!jII3OTPOI'IHO'I' HEOOHOPIAHOI
MIAKPINJIEHOI NEPEXPECHUMU PEBPAMU
uuniHAPU4HOI OBONTIOHKU 3 PIAUHOLO

HocnigxeHo BiNbHI KONMMBaHHA aHi3O0TPOMHOI HeOoAHOPIAHOI NiAKpinneHoi
nepexpecHUMM cuctemamum pebep UUNIHAPUYHOI OOGONIOHKM, WO KOHTaKTyE 3
pyxoMoto pigvHow. BukopucTtoByrouu BapiauiiHui npuHuun [aminbToHa -
OcTporpaacbKkoro OTpMMaHi CUCTeMM PiBHAHb ii pyxy. 3 MeTow BpaxyBaHHs
HEeOA4HOPIAHOCTI MaTepiany OOGONIOHKM 3a TOBLIMHOK NPUMMAETLCS, WO MoAynb
lOHra i wWinbHicTb MaTepiany o6GONOHKM € (YHKLiIMM HOpPMarnbHOI KoopAWHaTH.
YucenbHo peanizoBaHi YacTOTHi PiBHAHHA Ta mnoOyAoBaHi XapakTepHi KpwuBi
3anexHocTemn.

Knroyoei cnoea: nidkpinneHa o60noHKa, eapiayiliHul npuHyun, piduHa, 8irbHe
KonueaHHs, aHi3ompornHa 060/10HKa.
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KONEBAHUA AHU3OTPOMNHOW HEOQHOPOHOM
I'IO,D,KPEI'IJ'IEHHOI7IVI'IEPEKPECTHbIMI/I PEBPAMU
UMNMHOPUYECKOM OBOJIOYKU C XKUOAKOCTbIO

UccnepoBaHbl  cBoGoAHbIe  KonmeGaHUA  aHU3OTPOMHON  HEOAHOPOAHOMN
noAkpenneHHOW NepekpecTHbIMM cucTeMaMu peGep LMNAUHAPUYECKOW OGONOYKM,
KOHTaKTUpYyoLen ¢ ABUXYLLENCA KMAKOCTbI. Mcnonb3ys BapuaLMOHHbIN NPUHLMA
FamunbTOoHa — OCcTporpaackoro NOCTpPoeHa cucTemMa ypaBHeHUN e€ ABUXeHus. Onsa
yyeTa HEOAHOPOAHOCTU MaTepuana OGONOYKM MO TOMWMHE MPUHUMMAETCH, YTO
moaynb HOHra M nNOTHOCTL MaTepuana oGOMOYKU SABASAIOTCA  (PYyHKUMAMMU
HOpManbHOW KoopAuHaTbl. YMCNEeHHO peanu3oBaHbl YacTOTHble YPaBHEHUA W
NOCTPOEHbI XapaKTepHble KpUBbIE.

Knrodeenle cnoea: nodkperinieHHass 06004Ka, 8apualUoOHHbIU MPUHYU, XUOKOCMb,
c80600H0€e KonebaHue, aHU30mporHasi 06ooyKa.
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