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OSCILLATION OF ANISOTROPIC 
INHOMOGENEOUS CYLINDRICAL SHELL 

WITH LIQUID SUPPORTED BY CROSS-RIBS 
 

Тhe free oscillation of an anisotropic inhomogeneous rib of a cylindrical shell 
supported by cross-systems of edges and in contact with a moving fluid is 
investigated. Using the Hamilton – Ostrogradsky variational principle, a system of 
equations of motion supported by cross systems of ribs, non-uniform in thickness 
by an anisotropic cylindrical shell in contact with a moving fluid, was constructed. 
To take into account the heterogeneity of the shell material in thickness, it is 
assumed that the Young's modulus and density of the shell material are functions of 
the normal coordinate. Frequency equations are constructed and implemented 
numerically. Characteristic curves of dependence are built. 

Keywords: reinforced shell, variational principle, fluid, free oscillation, anisotropic 
shell. 

 
Introduction. When designing modern devices, machines and struc-

tures, an important role is played by the calculations for the stability, oscilla-
tion and strength of thin-walled elements of the shell-type structures in con-
tact with the medium. Such structures can be in contact with a liquid and be 
subjected not only to static loads, but also to dynamic ones. To give greater 
rigidity of the shell are supported by various ribs. However, the behavior of 
inhomogeneous anisotropic thin-walled structural elements with ribs, taking 
into account their discrete location, the influence of the fluid has not been 
adequately investigated. Therefore, the development of mathematical mod-
els for studying the behavior of reinforced inhomogeneous anisotropic shells 
that most fully take into account their work under dynamic loads, and con-
ducting studies of stability and oscillations based on them, as well as the 
selection of rational parameters of structures in contact with a liquid, are 
urgent tasks. 

We note that the study of free vibrations of ribbed isotropic homogeneous 
cylindrical shells filled with flowing fluid is described in [1, 9]. The effects of 
the number of ribs, their rigidity, fluid flow velocity, various mechanical, phys-
ical, and geometric dimensions of the shell on the natural vibration frequen-
cies and the optimization parameter of a circular ribbed cylindrical shell are 
studied. The works [4, 5] are devoted to the study of the free oscillation of an 
isotropic inhomogeneous rib of a cylindrical shell supported by cross sys-
tems of edges in contact with a moving fluid. Using the Hamilton – Ostro-
gradsky variational principle, systems of equations of motion supported by 
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cross systems of ribs, non-uniform in thickness by an anisotropic cylindrical 
shell in contact with a moving fluid, are constructed. The results of an expe-
rimental study of the effect of reinforcing ribs and attached solids on the 
frequencies and forms of free vibrations of thin elastic structurally inhomoge-
neous shells are presented in [3]. In the papers [6, 7], using the asymptotic 
method, the frequency equations of smooth cylindrical shells filled with liquid 
were constructed, approximate frequencies of the equation and simple cal-
culation formulas were obtained, which allow finding the values of the mini-
mum natural frequencies of the oscillations of the considered system. Here, 
the forced vibrations of a reinforced shell filled with a liquid are investigated, 
and the amplitude - frequency characteristics of the considered oscillatory 
processes are determined. The works [10 – 12] are devoted to the study of 
parametric oscillations of a non-linear and non-uniform in thickness rectili-
near rod in a visco-elastic medium with the use of the Pasternak contact 
model. The effects of the main factors - the elasticity of the base, the dam-
age of the material of the rod and the shell, the dependence of the shear 
factor on the oscillation frequency on the characteristics of the longitudinal 
vibrations of the points of the rod in a visco-elastic medium are studied. In all 
the cases studied, the dependences of the zone of dynamic stability of vibra-
tions of a rod in a visco-elastic medium on the parameters of the structure on 
the load-frequency plane are plotted. 

Formulation of the problem. Anisotropic inhomogeneous ribbed shell is 
considered as a system consisting of its own shell and rigidly connected 
edges along the lines of contact. It is assumed that the stress-strain state of 
the shell can be completely determined in the framework of the linear theory 
of elastic thin shells, based on the Kirchhoff – Love hypotheses, and the 
theory of Kirchhoff – Clebsh curvilinear rods is applicable to the calculation 
of the ribs. The coordinate system is chosen so that the coordinate lines 
coincide with the lines of the main curvatures of the middle surface of the 
shell. It is assumed that the edges are placed along the coordinate lines, and 
their edges, like the edges of the shell, lie in the same coordinate plane. In 
addition, it is assumed that all edges form a regular system. A regular sys-
tem of longitudinal and annular ribs is understood to be such a system in 
which the stiffness of all the ribs, their mutual distances are equal, and the 
distance from the edge of the shell to the nearest edge to it is equal to the 
distance between the ribs. 

The deformed state of the shell can be determined through three compo-
nents of the displacements of its middle surface ,u   and w . In this case, 
the angles of rotation of normal elements 1 2,   relative to the coordinate 
lines y and x are expressed through w and   with the help of dependencies  

1 2,w w
x y R

   
         

, 

where R  the radius of the middle surface of the shell. 
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To describe the deformed state of the ribs, in addition to the three com-
ponents of the displacements of the centers of gravity of their cross sections 
( , ,j j ju w first transverse rod , ,i i iu w  of the longitudinal rod), it is also 

necessary to determine the twist angles kpi and kpj . 
Taking into account that, according to the accepted hypotheses, there is 

a constancy of radial deflections along the height of the sections, as well as 
the equality of the corresponding twist angles resulting from the rigid connec-
tion of the ribs to the shell, we write the following relations: 

1 2

1

2 1

2

2 1

( ) ( , ) ( , ); ( ) ( , ) ( , );
( ) ( , ); ( , );

( ) ( , ); ( ) ( , ) ( , );

( ) ( , ) ( , ); ( ) ( , );

( , ); ( ) ( , ).

i i i i i i i i

i i i i

kpi i j j j j

j j j j j j

j j kpj j

u x u x y h x y x x y h x y
w x w x y x y

x x y u y u x y h x y

x x y h x y w x w x y

x y x x y

       

   

     

     

     

 

Here 1 10,5 , 0,5 ,i i j jh h H h h H     h   shell thickness, 1
iH  and 1

jH   

distance from i -th longitudial and j -th cross rib to shell surface, ix  and iy
– interface line coordinates of ribs with shell, ,i kpi   and ,j kpj   – angels 
of bending and twisting of cross-section of longitudial and transverse ribs 
respectivel. 

Regarding external influences, it is assumed that the surface loads acting 
on the ribbed shell from the liquid can be reduced to the components ,x yq q  

and ,zq applied to the middle surface of the shell. 
Differential equations of motion and natural boundary conditions for a 

transversely supported orthotropic cylindrical shell with a fluid are derived 
from the Ostrogradsky – Hamilton variational principle. To do this, we first 
write down the potential and kinetic energy of the system. 

To take into account the heterogeneity in thickness of the cylindrical 
shell, we will proceed from the three-dimensional functional. In this case, the 
total energy functional of a cylindrical shell has the form 

 
2 2 2 2

11 11 22 22 12 12
2

1
2

h

h

u wV z dxdydz
t t t

                                
∬   (1) 

There are various ways to account for the heterogeneity of the shell 
material. One of them is that the Young's modulus and the density of the 
shell material are accepted as functions of the normal coordinate z: E = E 
(z), ρ = ρ (z) [8]. It is assumed that the Poisson’s ratio is constant. In this 
case, the ratio of strain-stress is: 

( ) ( ) ( ) ( ) ;11 11 11 12 22 22 12 11 22 22 12 66 12=b z +b z ;   =b z +b (z) ;  =b z          (2) 
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11 22 12; ; .u uw

x y y x
   

       
   

 

(3) 

Taking into account (2), (3) and 

 
2 2 2 2

2

2 2 2 2 2

0 1

2 22 2

2

2

 

h

h

u wz dxdydz
t t t

u w w u w
t t t x t t y t t

w w dxdy
x t y t



                          

                                                 

                 




 







∬

∬  

in (1), it can be written down 

  



 

2
11 11 12 11 22 26 12 22 16 11 12

2 2 2
2 2

22 22 66 12

1 2 2 2
2

,

V b b b b

u wb b dxdy dxdy
t t t

           

                              

   

  

∬

∬
 (4) 

here  
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;
h

h
b b z dz


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E z E zb z  
 

     

2
22

1 2

( )( ) ;
1

E zb z 
  

 66 12( ) ( ) G(z)b z G z    main elastic modules of 

orthotrop material, 
.

( )
h

h
z dz



   . 

The expressions for the potential energy of the elastic deformation of the 
longitudinal and th transverse ribs are as follows [9]:  

2 2 22 2 2

2 2
0

1 ;
2

L
крii i i

i i i i yi i zi i крi
u wП E F E J E J G J dx
x xx x

                                   
     
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22 22

2 2
0

2 22

2

1
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j j j j
j j j j xj

крj крi ji
j zj j крj

w w w
П E F E J

y R x R

uuE J G J dy
R y R yy

                  
                  

  

  

(5) 

The kinetic energies of the ribs are written as [2]: 

  

2

1

2

1

22 2 2

2 2 2 2

;

.

x
крi крii i i

i i i
ix

y
j j j крj крj

j j j
jy

Ju wK F dx
t t t F t

u w J
K F dx

t t t F t

                                 
                                   





  (6) 

In expressions (4) and (6), , , ,i zi yi kpiF J J J   the area and moments of 
inertia of the cross-section of the longitudinal rod, respectively, about an axis 
Oz  and an axis Oy parallel to the axis and passing through the center of 
gravity of the section, as well as , , ,j zj yj kpjF J J J   its moment of inertia dur-

ing torsion; similar values for the transverse rod; and ,i iE G – the modules 

of elasticity and shear ,j jE G  of the material of the longitudinal and trans-

verse rods, respectively, ,i j   of the density of the materials from which 
the longitudinal and transverse rods are made.  

The potential energy of external surface loads acting from an ideal fluid 
applied to the shell is defined as the work performed by these loads when 
the system is transferred from a deformed state to an initial non-deformed 
state and is represented as 

  

2

0
0 0

.
L

zA q wdxdy


    (7) 

The total energy of the system is equal to the sum of the energies of the 
elastic deformations of the shell and transverse ribs, as well as the potential 
energies of all external loads acting from an ideal fluid 

  
   

2 1
0

1 1
.

k k

j j i i
j i

J V K K A
 

          (8) 

here 1k  – is the number of longitudinal, 2k  – is the number of transverse ribs. 
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Assuming that the main flow velocity is equal U and the deviations from 
this velocity are small, let us use the wave equation for the potential   of 
perturbed velocities along [13] 

  

2 2 2
2

2 2 2 2
0

1 2 0.U U
R ta t R

      
       

  
   (9) 

The expression of the total energy of the system (8) and the equation for 
the motion of a fluid (9) are complemented by contact conditions. On the 
contact surface of the shell - liquid, the continuity of radial velocities and 
pressures is observed. The condition of impermeability or smoothness of 
flow around the shell wall is [13] 

   
0

1
.r r R

r R

w wU
r t R



   
         

 (10) 

Equality of radial pressure from the liquid to the shell: 

  
.z r Rq p    (11) 

If in (9) and (10) we substitute U = 0, then we obtain the equation of mo-
tion and the condition of impermeability or smoothness of flow around the 
shell wall for a fluid at rest. The frequency equation of a ribbed inhomogene-
ous orthotropic shell with a flowing fluid is obtained on the basis of the prin-
ciple of stationarity of the Ostrogradsky – Hamilton action 

  0,W   (12) 

where 
t

t
W Jdt




 

 
is the Hamilton action, t   and t  are given arbitrary points 

in time. 
Complementing the contact conditions of the total energy of system (8), 

the equations of motion of a liquid (9) arrive at the problem of natural oscilla-
tions supported by a cross-system of ribs of a thickness that is non-uniform 
in thickness of an orthotropic cylindrical shell with a flowing fluid. In other 
words, the problem of natural oscillations, supported by a cross-system of 
edges, of an inhomogeneous orthotropic cylindrical shell with a flowing fluid, 
reduces to the simultaneous integration of expressions for the total energy of 
system (8), the equation for fluid motion (9) when conditions (9) and (10) are 
satisfied their contact. 

Problem solving. The potential of perturbed speeds   are looking for in 
the form 

     1 1 1, , , cos sin sinr t f r n t       .  (13) 
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In expression (8), the variable quantities are u, ϑ, w,. These unknown 
values are approximated as follows:   

  

0

0

0

cos sin sin ;

sin cos sin ;

sin sin sin .

xu u k t
l
x k t
l
xw w k t
l


  


    


  

  (14) 

Substituting (14) into (8) after integration, we obtain a function of the va-
riables 0   , u  0 ,  0w . The stationary value of the function obtained is deter-
mined by the following system: 

0 0 0
1) 0; 2) 0; 3) 0.J J J

u w
  

  
  

                                             

(15) 

Nontrivial solution of the system of linear algebraic equations (15) of the 
third order is possible only in the case when 1   the root of its determinant. 
The definition 1  reduces to a transcendental equation, since 1 it is in-
cluded in the arguments of the Bessel function 

 0,    , 1,3ijdeta i j  . (16) 

Numerical results. The frequency equation (16) is solved numerically.  

160 ;R мм  800L мм ; 0,45 ;h мм  96,67 10j iE E Па    ; 

0 1430 / ;a м сек  37,8 /j i г см    ; 25,75 ;jF мм  419,9 ;хjI мм

4
. 0,48 ;kp jI мм

 1 0,11;   2 0,19;   . 6
3 0,5305 10 ;

2
kp iI

R h
 



6
3 0,8289 10 ;

2
yiI

R h
 

   
10,1591 10 ;

2
іF
Rh

 


  6
3 0,13 10

2
ziJ
R h

 


. 

Two types of laws of variation of heterogeneity are considered  

- linear    1 1 1 ;E z E z h      2 2 1 ;E z E z h     10z z h    ;
 
 

- parabolic     2
1 1 1 ;E z E z h       2

2 2 1 ;E z E z h 

    21 .0z z h     
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Here, ,   are the heterogeneity parameters. Note, that with a linear law 
change, 1,  1  , with a parabolic change, ,   are arbitrary. The 
counting results are shown in Fig. 1 and Fig. 2.  

 
 

Fig.1 – Зависимость параметра частот колебаний от скорости жидкости:  
1 – линейный закон, 2 – параболический закон  

 
Fig. 2 – The dependence of the frequency parameter on the number of longitudinal 

edges:  1 – uniform shell, 2 – linear law, 3 – parabolic law 

In Fig. 1 shows the dependences of the frequency parameter 1 on the 

relative flow velocity U  for various laws of variation in heterogeneity across 
the shell thickness, and for different ratios 1 2/E E . It is seen that the in-
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crease in speed leads to a decrease in frequency. Note, that 0U    corres-
ponds to the resting fluid.  

In Fig. 2 illustrates the effect of the number 1k of longitudinal ribs on the 
parameters of the oscillation 1 frequency of the considered system. It is 
seen that with 1k an increase in the parameters of the frequency of oscilla-
tion 1 of the system first increase, and then at a certain value 1k  they begin 
to decrease. This is because, with an increase 1k  in the weight of the rods, it 
increases and leads to a significant influence of their inertial properties on 
the oscillation process. Comparisons of the above graphs show that taking 
into account inhomogeneity leads to a decrease in the values of the natural 
frequencies of the considered system compared to the natural frequencies of 
the same system when the shell is homogeneous. In addition, with a de-
crease in the ratio 1 2/E E  of the oscillation frequencies of the considered 
system, it also decreases compared to the natural frequencies of oscillations 
of the same system when the shell is isotropic. 

Conclusions. The free oscillation of an anisotropic inhomogeneous rib of 
a cylindrical shell supported by cross-systems of edges and in contact with a 
moving fluid is investigated. Using the Hamilton – Ostrogradsky variational 
principle, a system of equations of motion supported by cross systems of 
ribs, non-uniform in thickness by an anisotropic cylindrical shell in contact 
with a moving fluid, was constructed. To take into account the heterogeneity 
of the shell material in thickness, it is assumed that the Young's modulus 
and density of the shell material are functions of the normal coordinate. In 
the study of free oscillations, supported by cross systems of ribs, anisotropic 
cylindrical shell inhomogeneous in thickness, in contact with a moving fluid, 
two cases are considered: a) the fluid inside the shell is at rest; b) the fluid 
inside the shell moves at a constant speed. In both cases, frequency equa-
tions are constructed and implemented numerically. In the process of calcu-
lations, linear and parabolic laws are adopted for the inhomogeneity func-
tion. Characteristic curves of dependence are built. 
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УДК 539.3 
Ф. С. Латіфов д-р фіз.-мат. наук, З. М. Бадіров 

КОЛИВАННЯ АНІЗОТРОПНОЇ НЕОДНОРІДНОЇ 
ПІДКРІПЛЕНОЇ ПЕРЕХРЕСНИМИ РЕБРАМИ 
 ЦИЛІНДРИЧНОЇ ОБОЛОНКИ З РІДИНОЮ 

 
Досліджено вільні коливання анізотропної неоднорідної підкріпленої 

перехресними системами ребер циліндричної оболонки, що контактує з 
рухомою рідиною. Використовуючи варіаційний принцип Гамільтона –
Остроградського отримані системи рівнянь її руху. З метою врахування 
неоднорідності матеріалу оболонки за товщиною приймається, що модуль 
Юнга і щільність матеріалу оболонки є функціями нормальної координати. 
Чисельно реалізовані частотні рівняння та побудовані характерні криві 
залежностей. 

Ключові слова: підкріплена оболонка, варіаційний принцип, рідина, вільне 
коливання, анізотропна оболонка. 
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Ф. С. Латифов, д-р физ.-мат. наук., З. М. Бадиров  

КОЛЕБАНИЯ АНИЗОТРОПНОЙ НЕОДНОРОДНОЙ  
ПОДКРЕПЛЕННОЙ ПЕРЕКРЕСТНЫМИ РЕБРАМИ  
ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ С ЖИДКОСТЬЮ  

 
Исследованы свободные колебания анизотропной неоднородной 

подкрепленной перекрестными системами ребер  цилиндрической оболочки, 
контактирующей c движущейся жидкостью. Используя вариационный принцип 
Гамильтона – Остроградского построена система уравнений её движения. Для 
учета неоднородности материала оболочки по толщине принимается, что 
модуль Юнга и плотность материала оболочки являются функциями 
нормальной координаты. Численно реализованы частотные уравнения и 
построены характерные кривые. 

Ключевые слова: подкрепленная оболочка, вариационный принцип, жидкость, 
свободное колебание, анизотропная оболочка. 
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