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VIBRATIONS OF A LONGITUDINALLY STIFFENED,
LIQUID-FILLED CYLINDRICAL SHELL IN LIQUID

In the paper we study free vibrations of a longitudinally stiffened, viscous liquid-
filled orthotropic cylindrical shell in ideal liquid. The Navier — Stokes linearized
equation is used to describe the motion of the internal viscous liquid, the motion of
the external liquid is described by a wave equation written in the potential by
perturbed velocity. Frequency equation of a longitudinally stiffened orthotropic,
viscous liquid-contacting cylindrical shell is obtained on the basis of the Hamilton —
Ostrogradsky principle of stationarity of action. Characteristic curves of dependence
are constructed.

Keywords: free vibrations; shell; ideal liquid; viscous liquid; stress; stiffening;
variational principle.

Introduction. In [1], free vibration of an orthotropic, soil-contacting
cylindrical shell inhomogeneous in thickness and stiffened with annular ribs,
is studied. Using the Hamilton — Ostrogradsky variational principle, a system
of equations of motion of a soil-contacting orthotropic cylindrical shell
inhomogeneous in thickness and stiffened with annular ribs, is constructed.
To account for heterogeneity of the shell material in thickness it is accepted
that the Young modulus and the shell material density are the functions of
normal coordinate. Using the Hamilton — Ostrogradsky variational principle
the frequency equations are structured and implemented numerically. In the
calculation process, linear and parabolic laws are accepted for the
heterogeneity function. The characteristic curves of dependence are
constructed.

The paper [5] was devoted to investigation of one of the dynamical
strength characteristics, the frequency of natural vibrations of an
inhomogeneous orthotropic, flowing liquid-filled cylindrical shell made of a
fiberglass and stiffened with annular ribs under Navier conditions. The
results of calculations of natural frequency of vibrations were represented in
the form of dependence of the speed of flowing liquid on the amount of
stiffening elements for different values of wave formation parameters and
different ratios of elasticity module.

The paper [6] represents the results of finding the frequencies of free
vibrations of a structurally anisotropic flowing liquid-filled cylindrical shell
made of a fiberglass and stiffened with annular ribs under Navier boundary
conditions. The results of calculations of natural frequencies of vibrations are
given in the form of dependences on the winging angle of the fiberglass for a
shell made of a tissue fiberglass and on the speed of flowing liquid for
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different values of wave formation parameters and various ratios between
the parameters characterizing geometrical sizes of the shell.

The supports formed by the combination of cylindrical panels are used in
bridge construction [4]. To save the material, the interior area of the support
is filled with soil. Such supports are exposed to different nature forces. One
of such forces is a force generated on the surface of cylindrical panels that
form supports during flood flow. Under the action of these forces the support
is exposed to forced vibration. Therefore, to study the supports formed from
combination of cylindrical panels with regard to viscosity and heterogeneity
of soil, orthotropic character of panels is of great practical importance. In the
paper, based on the Hamilton — Ostrogradsky variational principle, we study
forced vibrations of a vertical retaining wall consisting of three orthotropic
cylindrical panels contacting with viscous-elastic, heterogeneous soil, obtain
analytic expressions to calculate the displacements of the points of
cylindrical panels and structure characteristically curves. Account of
heterogeneity of soil is performed by accepting its rigidity coefficients as a
function of coordinate. It is assumed that the Poisson ratio is constant.

In the paper [9] natural vibrations frequency of the system that consisting
of a solid medium-filled elastic-plastic orthotropic cylindrical shell strengthened
with discretely distributed rings established on a plane perpendicular to its
axis are studied. Utilizing the Hamilton — Ostrogradsky principle, a frequency
equation for determining vibration frequencies of the system the following
consideration was created; its roots were obtained by mathematical method.

In the paper [3] free vibrations of an orthotropic, laterally stiffened, ideal
fluid-filled cylindrical shell inhomogeneous in thickness and in circumferential
direction is studied. Using the Hamilton — Ostrogrdasky variational principle,
the systems of equations of the motion of an orthotropic, ideal fluid filled
cylindrical shell stiffened in thickness and circumference, are constructed.

Problem definition. We consider free vibrations of a longitudinally
stiffened viscous liquid-filled cylindrical shell in infinite ideal liquid (Fig. 1).

ideal liquid

viscous liquid

Fig.1 — Longitudinally stiffened inhomogeneous cylindrical shell
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The equation of motion of a longitudinally stiffened orthotropic, liquid-
filed cylindrical shell in liquid, is obtained on the basis of Hamilton —
Ostrogradsky principle of stationarity of action

3w =0, (1

where Wz.[;, Ildt is Hamilton’s action, ¢ and ¢" are the given arbitrary

moments of time. Here
M=dy+ Y1 4, +4,+4;. @)

where 4, is the total energy of the cylindrical shell, 4, is the total energy of
the i -th longitudinal bar, k; is the moment of longitudinal ribs, 4,, and A4;

are potential energies of external surface loads acting as viewed from ideal
and viscous liquids and applied to the shell and are determined as a work
performed by these loads when taking the system from the deformed state
to the initial undeformed one and is represented in the form:

/2
Ay =R, [ qzpwilxd® (3)

4, :_R,[OLJ.OZT[(CIx”quy9+qZW)dxd6. )

Here ¢,.q,.q. are the load intensity acting on the shell as viewed from

the viscous liquid, ¢,,, is the load intensity acting on the shell as viewed

from ideal liquid.
The expressions for 4, and 4, are of the form [2]:

hi2 - . - -
I w1 (2)d=[| {bl 1871 + 212811822 + byt + Bseis } So(x)dxdy +

[ () ﬂ{ [(&:] @?f{?:) sz(x)dxdy ?

2
1k *2 . 2. 2
zj EF( j + B, a_vzvl + B, as; +
Ox Ox

/1x1

2
i by .
+G,~Jkpl~[ d@’i‘f’j dx+ (6)

09, ¥ (ow; ' ipi [ Oupi ?
+Zp1FI[( 61‘) (atj +(Ej +Tl( ot j dx.
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In the expressions (5) and (6)

e a8 o o9
11 ax’ 22 6)/ s 12 — 8y Ox
E, ~ E ~ wE vE ~
by = - by=——=2—; bp=—T-=—E2 h=G
v, 2 1- 150%) 1- ViVa 1- ViVa

are the basic elasticity module of the homogeneous, orthotropic material of
the shell, the displacements of the shell points; p is the density of the

homogeneous shell material; fi(z), f>(x) are the inhomogeneity functions in
the direction of normal and generatrix of the shell, respectively [8], v;,v, are
the Poisson ratios; E;,E, are the Young modulus of the shell matrial in
coordinate directions of the axes x, y, respectively; & is the shell thickness;
u;,9;,w; are the displacements of the bars points used in stiffening; F; are
the areas of cross sections of the i—th bar attached to the shell in the
direction of generatrix; E”l- is an elasticity modulus when the i—th bar

attached to the cylindrical shell is stretched in the direction of the generatrix;
J,;,J, are the inertia moments of the i— th bar with respect to the axis

yi
passing through the center of gravity of the cross-section; Jkpl- are inertia
moments when the i—th bar is twisted; ¢ is time, p; is the density of the
material of the i—th bar; (pi(x),(p,(p,-(x) are the torsional angle of the bar
cross-section and through the shell displacement are expressed as follows
ow 9
Prpi () =2 (x, ;) = —(ngEj

Y=Yi
Assuming that the basic flow rate equal U and deviations from this rate

are small, we use the wave equation for disturbed velocity potential (T) with
respect to [7, 10]

5 L[2%0 ., 2% 20%]_
Adp— (& 2UR6x6t +U 6x_2 =0. (7)

To describe the motion of external viscous liquid we use the Navier —
Stokes linearized equation for viscous compressible liquid [10]:

Pm s—% =—gradp + égraddivg + uv2§ . (8)
t
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where §(S ) Se) is a vector of velocity of an arbitrary point of liquid, p

x>V
is pressure at arbitrary point of liquid, p,, is liquid density.

The expression of the total energy of the system (2), the equation of
motion of ideal liquid (7) and viscous liquid (8) are supplemented by contact
conditions. On the contact surface of a shell-ideal liquid we observe
continuity of radial velocities and pressures. The condition of impermeability
or smoothness of flow at the shell wall is of the form [10]

6&) ow ow
p=—|,ep=—| 0=—+U=||,_z. 9
r=R ar|r7R (mat ax)'iR ()

S

7

Equality of radial pressures as viewed from liquid on the shell:
qzm =_1~7|r=R' (10)

On the contact surface of a shell-viscous liquid continuity of radial
velocities and pressures is observed, i.e. for =R there will be *

ou 29 ow
9. =—,9=—7,9,=— 1
e T aT o ()
dy :_eraqy :_Greaqz =—-p (12)

where o,,,6,q are viscous forces [1].

It is considered that the rigid contact conditions between the shell and
bars are satisfied:

w;(x) = (%, ;) + by (3%, 3;), 9;(x) = 98(x, ;) + gy (x, 7)),
wi(x)zw(x,yi), (pi(x)z(pl(xayi)a (pri(x)z(pZ(xayi); hi=075h+Hi1’

where Hi1 is the distance from the i -th bar to the surface of the cylindrical
shell; 4

ow
d)i(x) :¢1(x,yi) = _a‘yzyi .

Problem solution. We represent the solution of the Navier — Stokes
equation through the scalar potential ¢ and vector potential V' in the form

S =gradd+rony. (13)

is the thickness of the i-th longitudinal bar;

Substituting (7) in (6), we get:

Pm w =—gradp + %ugraddiv\z} + EAQ. (14)
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From (13) we easily get

divd = Ad; graddiv§ = grad A¢.
Using the vector identity rotrot$ = graddiv@— AS, we can write

AS= graddiv§ — rotrotd = gradAp— rotrot.
Using (7) we find
rotrotd = rotrot(grado + rot\y) = rotrotgrad @ + rot (rotrot\T/) =—rotAv,

gmddiv\‘—) = gard (A).
Substituting these relations in the equation of motion (8) we find

Pm %(gradd)) + gradp —%ﬁgmdp —%ﬁgmdAd)—ﬁ"OlA\Tf +Ppm g’”o"f’ =0

or
oo 4 _ - oy
rad —+ p——nA¢ |+rot| —-nAy+p,, — [=0.
g (pmat P 3u¢j (uw pmat]
This equation will be satisfied if we assume
o 4_
—+p——pAdp=0; 15
Pm 5, TP 3u¢ (15)
- oy
AT +p,, =0, (16)

Thus, the particular solution of equation (8) can be obtained based on the
particular solutions (15) and (16). From (9) and (10) it can be seen that for

finding the potentials ¢ and Wy we need to know the pressure p. We

illustrate it on an example, when the liquid is viscous Newtonian. In this case
to the system of Navier — Stokes linearized equations (8) that contains five

unknowns, three components of velocity 3,,9,,9¢g, pressure p and density

p,, » we add the continuity equation aa—l:+pmdiv§ =0 and the formula closing

the system in the form Z—p:af.ln the monograph [10] after some
p
transformations the following linearized wave equation is obtained
10 4§
ax O0°t 3pma* ot

The solution of equation (11) is of the form
p :(pan (M) +coY,, (Xr))expi(kx+n9+(ot) (18)
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where

0)2

2
A= AT —k%, 1, Y,
a?|1+i M(DZ
3pma*

are first and second kind Bessel functions of order n, where n is the
amount of waves along the circumference; k£ is a wave number or a
constant propagated phase, where k=mn/L,m is the amount of
longitudinal waves in the shell, the value ® characterizes cyclic frequency of
the wave; p is a dynamical viscosity factor; p, is liquid’s density in

unperturbed state; a« is the velocity of propagated small perturbations in
liquid; pq,cy are constants.

Assuming the function p bounded as r— oo, we find p, =0 and then
finally

P =coYy, (Ar)expi(kx +n0+or). (19)
From (15), for finding ¢ we get the equation

A¢_3P_m@
AT ot

=coY,, (Ar)expi(kx +n0+wt). (20)
The solution of the homogeneous equation (20) is of the form

o= C 1, (kr)+ CyK,, (kr),
where k = \/kz +3imp,, /41, 1, (Igr), K, (lgr) are the first and second kind

modified Bessel functions of order n, respectively; C;,C, are constants. By

means of the method of variation of constants, we can write the solution of
the equation in the form

r) = pof () + K, (kr), 21
where
A(r) = 1, (k) K}, (kr) = I, (k) K, (kr);
SO~ 1,0 [ A7 (@), (0K, (kepde + K, (b)) A7), ()1, (Re)de.
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The equation with respect to the componenets of the vector

(w1, w2 w3) is of the form Ay =Lz OV
pL ot
or
2
ZOJ
W) +— \v,(r) ( ;"” +—J\u,(r) 0. (22)

The solution of equation (22) corresponding to the problem under consi-
deration, is of the form:

v =Y, (gr) (i=12,3) (23)

here ¢ =+/k> +io/p.
Using (13), (17) and (19), for the components of velocity vector we get:

ko . . ’ .
v, = —p?pof(r)—i-lkln(kr)pl +(m/n(qr)—qJn(qr))uz}expt(loc+n9+0)t);
L m

Vo= 3 pof(r)+m] (k) -H(k——j.] (qr)u2:|expl(/oc+n9+c0t) (24)
pma*

i(D ’ i ’ . .
V= o2 pof () +kJ (k) +(qJn(qr)—tk/n(qr))uz}exm(loﬁn%w).
L Pmt*

By means of the viscosity force formula [1] we find:

_| 2ko
6 =u{ 1) po + 20k (kr )y +
pma*

J{—k(k—%)Jn (qr)+%]r', (qr) —J,;’(qr)]uz}expi(kx+n9+ ot);

Gr9=H|: Rinw 1) o+—J (kr)py +
" (25)

+(i(k —%)Jn(qr) —ikJ} (gr) +J,’l’(qr)ju2}expi(kx+n9+ ot);

G, = poJ, (Ar)expi(kx +nb+ot).
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Using contact conditions (12) and expressions (25), we find the forces
9x-4y,9. acting on the shell as viewed from viscous liquid

| 2ko g
qx=u|:_ 2f(”)P0+2’kJn(kr)H1+
Pmax

+(—k (k —%)Jn(qr) +%ZJ,’, (qr) —J,',’(qr)juz}expi (kx+nb+ot);

q. = poJ, (AR)expi(kx +nb + wt);

_ 2n® 2in
g, =H|— 5 S (R) po +—=Jp (kr)uy +
Rpma* R

(26)
+[i(k —%)Jn (gr)—ikJ, (qr)+ J,’,’(qr)juz}expi(kx +n0+wr).

We will look for the displacements of the shell points in the form
U =ugyy, expi(ke +nb+wt) ; §=80k,1 expi(kx +nb+ wt) (27)

W= Wy, expi(kx +nb+or) .

Here ugy,,, S, > Wor, are unknown constants.

Contact conditions (11) imply a system of algebraic equations with respect to
unknown constants  pg, L, Mo, Ugk, > Yok Woin-  THiS sSystem  allows to

express the constants and u, by the constants u,,,8,, wor, - Then we
get:

Pmax

¢, =HioA™! H_i@z F'(R) Ay +2ikJ ) (kR)A;» +£—k[k —%) x

in o, "
XJn(qR)JrEJn(qR)—Jn(qR)jAls)L‘Okn +

Pt

J{— 2RO 1 RYAy + 20T (kR)A gy + Sgps + (28)

+[_ 2’“*’2 SRy +2ikT;, (kR) A3, + [—k[k —%) Ju(qR)+

pma*
+%J,’, (qR)—J,’,’(qR))A”)kan }expi(kx +n0+ot);
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q, :ﬁimAll( 21“”2 f(R)A11+2R J! (kR)A12+[ (k——)

pma*

ko
XJn(qR)—ikJ,Q(qR)JrJ;Z'(qR))Als)Mwm+(— : 5 [ (R)Ay +

pma*

+2%J (kR)A; +[ (k——JJ (qR)—ikJ, (qR)+J”((1R)jAz3]90kn

+(_ iﬂ(})zf(R)ASI_i_%J (kR)A32+( (k_ j‘]n(qR)
ma*

—ikJ! (qR)+ J,'l’(qR))A33)w0knJexpi(kx +n0+ot);

0. =, OMR)iOA™ (Aq g, + A S0k, + A3 Wop ) expi (fx + 10+ oot),

where A is the main determinant, Asp(s,p=l,2,3) are auxiliary

determinants of this system. These determinants are given in [6].
We can calculate the work performed by these loads when taking the
system from the deformed state to the initial undeformed state.

o1 Ll .
A_:Zul(DA (e’kl—l) 02 —1|ef {{ kaf(R)A11+2l/fJ (kR)A, +

/ nk poag

n in 12 "
+ (—k(k—EjJn (qR)"‘EJn (gR) _Jn(qR)jAl3:|u3kn +

4{_ 2nm f(R)A21+2R J! (kR)Azz‘{ [k——jJ (gR) —ikJ}, (gR) +

poa*
" 2 1 2 _ 2ko
+J7(qR)) Ay |95k +J, ORI A wip,, + > [ (R)Ay; + (29)
P

+2ikJ, (kR) Ay +(—k (k —%jJn(qR) +%J{1 (gR)—J, IJ(qR)jAB -

20 f(R)AmZR J, (kR>A12+( (k——jJ (qR)—ikJ},(qR)
pma*

" 2kw
+J5/(qR)) A3 Jttgjn Son {— 5 [ (R)A31 +2ik];, (kR) A3 +

P e
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+[ k k—— T (qR>+ 2 IiaR)- J"(qR)]A33+J (LRI g Jtgt oin +

2nm 2in
{ 5 ['(R)As3 =22 n(qR)Asy +
Rpma* R

+ k—— J(qR) —ikJ,, (CIR)+J"((IR)JA33+J (AR)E™ AZI:I}SOknWOkn'

We look for the perturbed velocities potential ¢ in the form:

O(x,7,0,¢) = f(r)expi(kx+nb+wr). (30)
Using (30), from equation (7) we have [10]:
= ow ow
=— —+U—|, 31
b="0a ( o ax) 1)
- *w *w D) o%w
= % +2U , 32
p (P()U’lp [atz Raxat axz ( )
where
KBy
K, (BR)
(pOU’l = ]\],LBF), M‘l >1
N, (BR)
n
L M =1
anfl
Here
ay =YEORE 2 g2 M B =R (P - DK,
o

is a second kind n -th order modified Bessel function; N, are n-th order

Neumann functions; p«is density of liquid.
Proceeding from condition (10), using (32) we have

2 2 2
. =¢anp*[a Wy W 20 W], (33)

o2 Roxot o2

where @q; =gy | =R -
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We can calculate the work performed by g, when taking the system from

the deformed state to the initial under formed state
2RQ,,p* ( i i
A, =—“’an (e”d —1)(1—el"“)(m2 +2Ukm+k2U2).
n

Substitute approximation (27) in functional 1 (2) and considering that in
this functional x; =0, x, =1, y; =0, y, =2n, ¢'=0, {"=n/w, we integrate
with respect to x,y and ¢. Then instead of the functional 11 we get the
function W of the required values ug,,,So1,> Wor,- The stationary value of
the obtained function is determined by the following system of equations:

W _o. W _o W _y (34)
Oy 0%0kn OWokn

Or

. 27
- % : - > i
{_jll(kzbn * nR266JST(l_emn)_zwz(p'S'TJrL apiFisin’ ne,-)+

sl .
+w(61k1 —1)(e’”” _1) Zko 5 S (R)Ayy +2ikT}, (KR) Ay +
nk Poa*

+(—k(k—%jJn (qR)+%J,;(qR)—JZ(qR)JA13}+

+£ZEI'F;'k2 Sil’lz nel_ Uopn + 4l nkblz _b6 ST(I —emn) +
2 part n R
Sl
N 4fioA (elkl 1)(e ikl -1 2k®f (R)Ayy +2ikJ,, (kR)Ayy +
nk pa*

n in " " 2}’!_(,0 !

’{_k(k__J J, (qR)+—J} (qR)—J (qR)jA23 - 5 S (R)A +
R R Rpma*

+2l—nJ' n(KR)A +( (k——jJ (qR)—ikJ, (qR)+J”(€1R)jA13}} Sosm +

n nk

+{ 4lkb12 ST( mn) 4Hi“)A_1 (eikl _1) (einn —I)X

{ 2o 5 S (R)Azy +2ik], (kR)A3, J{ (k—%jJn(qRH%Jé(qR)—

Pm a*

—J3(qR)) As3 | wop, =0; (35)
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{ 2k > S '(R)Ay, +2ik, (kR)A22+( k(k—ﬁ)Jn(qR)+
pma* R

2n® 2in
5 [ (R)A +— F: Jp(kR)A, +

ln ’ n
+—Jy (qR)—Jn(qR)jAB -
R pma*

+(i[k —%)Jn (qR) —ikJ, (qR)+ Jr'z'(qR)JAw :|}”0kn +

+{ 41["}:’22 +k b66]ST(1 ""‘)+—4w;’°kAl (e""’—l)(e"”“—1)x

n

><|:— 2nm f(R)A21+—J (kR)A», +[ (k——)J (qR)—ikJ; (qR) +

Rpma*
+J”(61R))A23+ Z lepl k? cos® n6; — [p S- T+LZplFs1n no; ]+

i=1

J i €OS” 10;
+sz1F COS ne +lzplkpl—] SOkn+{SInb22 ST( mrr)><
R

i=1 i=1 R?
2no 2in dfioA™" .
——— [ (R)A3 +=22; (kR)A32“_( ) (& 1) x
poa* R nk
mp;J i €08 nb; 1,G;J,
[ ZLZ Pi kpz _z kpl k2m0052 o, +
l 1

+(i(k ‘Ej Jn(gR) =ik (qR>+J,;'<qR>jA33 Ty RO gy [ g = 0:

{ 41;22 ST(I ””‘) ‘minLch_l(eikl—l)(ei”"—l){ pZ::)* S (R)Az +

+2i/c],’l(kR)A32+(—k(k— jJ (qR)+ J (gR)— J"(qR)jA33+

4b,,

__ 4ftioA™!
+Jn(}\.R)},l 1A31]}u0kn+{—R—ST( - 1nn)+}~1~— X

nk
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2

X(eikl_l)(einn_l) 20w f(R)A31+2’_”J (kR)A3, —
Rp,, ax

ky Jkpl cos® nb,

) ZZ

GJkpl 2

cos ne +

als
l 1
+(i[k—%}/n (qR) =i (qR)+J;;(qR)]A33 +J, (RO 8 180+

_4ib s Am0A™! ‘ T
[ om0 2 -
nR n
k kg, - cos’ nn’
—w’ [5'S'T+LZPiFi sin” 10 +szikpl—21 Wokn =0
i=1 =l R

1 chi2 ! i
where S :ELh/zfl(z)dZ’ T= IO "™ 1 (x)dx.

Since the system (35) is a homogeneous algebraic system of linear
equations, the necessary and sufficient condition for the existence of its
nonzero solution is the equality of its main determinant to zero. As a result
we get the following frequency equation

On P P
Dy Py P =0, (36)
Dy Py Py

where ¢, (i, j =1,2,3) are the coefficients for the unknowns uy,, 84> Worn

in the system.

Conclusions.Equation (36) was calculated by the numerical method.
The parameters contained in the solution of the problem are:

by, =18,3HPa; by =2,77HPa; by, =25,2HPa; bgg =3,5HPa;

o=p;=1,85.10° 2 et £, =6,67-10° 2;v1=v2=0,35;ao:1450ﬂ;
sec

4 H -3 -
Pp=110"—; a=0,4; h=0,45-10"m =3; m=1;, R=16m;

!
m? "R
n=8 F=5210"°m" I;,;=02310""m* I,=5110"m"

o =1,3mm fl(z)—l—i-oc fz(x)—l—i-ﬁ—
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The results of calculations were given in Fig. 2 in the form of the
dependence of frequency paramater U/a,. On the amount of stiffening
longitudinal bars k; on the shell surface, in Fig. 3. in the form of dependence
of the frequency parameter on inhomogeneity parameter in the direction of
the generatrix B of the shell, in Fig. 4 in the form of dependence of the
frequency parameter on the liquid flow rate U . In the figures, the dotted
lines correspond to vibrations of a longitudinally stiffened viscous liquid-filled

cylindrical shell in infinite ideal liquid, the solid lines correspond to vibrations
of a longitudinally stiffened cylindrical shell in an infinite ideal liquid.

0.55 -

1

035 2

B Ula,=0,10

>
T T T T k1 LS
5 10 15 20

Fig. 2 — Dependence of the frequency parameter
on the amount of longitudinal ribs kl-

0.55

0.45

0.35

Fig. 3 — Dependence of the frequnecy parameter
on the inhomogeneity parametr 3 in the longitudinal direction
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0.4 0.8 1.0 0.20

Fig. 4 — Dependence of the frequnecy parameter
on liquid flow rate
From the figures it can be seen that availability of viscous liquid leads to
decrease in the value of natural frequency vibrations of the system
compared to the frequency of vibrations of the system with any liquid. As can
be seen from Fig. 2 with increasing the amount of longitudinal ribs, the value
of the frequency parameter increases. As the inhomogeneity parameter
increases in the direction of the generatrix of the shell 3, as can be seen

from Fig. 3 the value of the frequency parameter increases. Furthermore, the
value of the frequency parameter increases with increasing orthotropic
properties of the cylindrical shell, and decreases with increasing the liquid
flow rate (Fig. 4).
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YK 539.3
H. I. Anizade

KOJIMBAHHSA B PIAWHI MO300BXHbLO NIAKPINNEHOI
UMnIHAPU4YHOI OBOJIOHKW, LLO 3ANMOBHEHA
B’A3KOKO PIAMHOIO

DocnigpkeHo BiNbHi KONMMBaHHA B igeanbHin piavMHI NO340BXHLO 3MiLHEHOI
OpPTOTPONHOI LMNIHAPUYHOI 0GONOHKMY, Lo 3anoBHEHa B'A3KOK0 piauHoto. [ina onucy
PyXy BHYTPIWHbLOI B'A3KOI PiAUHM BUKOPUCTOBYETLCA NiHeapu3oBaHe PiBHAHHA
HaB'e — CTtoKca, pyx 30BHilUHbOI PiAWHM OMUCYETLCA XBUNLOBUM PiBHAHHAM,
3anucaHyMM B noTeHuiani o6ypeHoi wBuakocTi. Ha ocHoBI NnpuHUMNY cTauioHapHOCTI
apii FaminbToHa — OcCTporpaacbKoro OTPUMMaHO 4YaCTOTHE PiBHSAHHA MO300BXHbLO
NiAKpIiNNeHoi OPTOTPOMHOI LMNIHAPUYHOI OGONMOHKU 3 3B'A3KOK pPiAMHON, LWO

KOHTaKTYye 3 ifleanbHo piavHoto. MobyaoBaHO XxapaKTepHi KpUBI 3anexHoCTeN.

Knroyoei cnioea: sinbHi KonueaHHsi;, 0boroHKka; ideanbHa piduHa; e'a3ka piduHa;
HarnpyXeHHsI; )XOpcmkicmb; apiauitiHul npuHyUr.

Posarnsgaemo BinbHi KONMBaHHSA B igearnbHin pignHi No3goBXHBO 3MiLHEHOT
OPTOTPOMHOI  LUMAIHAPUYHOI OBOMOHKM, 3anoOBHEHOI B'A3KOI  PigUHOM.
PiBHAHHA pyxy B pigvHi OpTOTPONHOI OGOMOHKW, 3amnOBHEHOI PiAVHOM,
OTPMMaHO Ha OCHOBI NpUHUMMY CcTauioHapHocTi fAii aminbToHa —
OcTporpagcbkoro

"

e W =.[; I1dt — pis 3a FaminbToHoM; ¢’ i t" — 3apgaHi 4OBINbHI MOMEHTH

k, . . .
yacy; II=4, +Zl_]:1 A +A4, +Aj. ; Ao — 3aranbHa eHepria UuniHAPUYHOI

000noHKY; An — 3aranbHa eHepriﬂ i-r0 NO340BXHbLOro pe6pa; k1 — MOMEHT

No3a0BXHix pebep; A i A/ — MOTEHLiNHI eHeprii 30BHILLHIX NOBEPXHEBUX

m

HaBaHTaXeHb Bi4 igeanbHUX | B'A3KMX piguH, 9K NpuknagawTbes [0
00OMOHKM | BM3HA4YalOTbCs K pobOoTa, BUMKOHAHA LMMU HaBaHTaXXEHHAMU
npu nepeBedeHHi cuctemun 3 AedopMoBaHOrO CTaHy B MOYaTKOBUMA
HegedOopMOBaHUK, | NpeacTaBNsAeTbCA Y BUrNAAI

4, = —RJ.é Oznqzmwdxdﬁ, 4; = —RL)L jozn(qxu +q,9+ qzw) dxd®.
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TYT q.,q,,q, — iHTEHCUBHICTb HABaHTaXeHHs, WO Aie Ha 0BOMNOHKY 3 BoKy

B’A3KOT PiAvHK, ¢ _ — IHTEHCMBHICTb HaBaHTAXEHHS, sIKe i€ Ha OBOMOHKY 3

OoKy igeanbHOI pignHWn.

Ona onucy pyxy BHYTPIWHBOI B'A3KOI PiAUHW BUKOPUCTOBYETLCH
niHeapmnsoBaHe piBHAHHA HaB'e — CTokca, pyx 30BHIWHBLOI PigUHK
OMNUCYETBCA XBWUMBbOBUM PIBHAHHAM, 3anucaHum Yy dopmi noTeHuiany
30ypeHux LBMOKOCTEN.

Micna cneuianbHUX NepeTBOPEHb oOfepxaHa OJHopigHa cucTema
NiHINHKMX anrebpaiyHux piBHAHb. HeobOXigHOW Ta [OCTAaTHLOK YMOBOH
iCHyBaHHS ii HEHyNbOBOrO PO3B’A3KY € PIBHICTb ii OCHOBHOrO AeTepMiHaHTa
Hynto. B pesynbtaTi OTpYMyeEMO Take PiBHSHHSA 4acToTu

Oy P Pis
Oy Py 9n|=0,
Dy P Py

pe ¢,(i,j=123) — dyHkuii HeBigomuX; u,,9,w, — nepemilleHHs

CTEPXKHIB, L0 BUKOPUCTOBYHOTLCS ANS NiAKPINIEHHsT 060MOHKM.

OTpuMmaHi 3anexHOCTi 4acTOTW KONMMBaHb Bif4 KiNbKOCTi MO34OBXHIX
nigkpinneHbs, napameTpy HeO4HOPIAHOCTI Ta 06CAry 3anoBHEHOI PianHN.

HaBegeHi uucrnosi pesynbTatu. [lpoBedeHO MOPIBHANBHUA — aHani3
napameTpy 4acToTv Ans BUNagKy 3anoBHEHHs1 060MNOHKM igearnbHOI PignHOI0.
Ha puc. 1—- puc. 3 NyHKTUpHI niHii BigNOBiAalOTb KONMBAHHAM NO300BXHLO
3MiLHEHOI 3aMoBHEHOI B'A3KOK  PIAWMHOK  UMNIHOPWUYHOI  OBOMOHKK, Lo
3HaXOOUTbLCS B HECKIHYEHHIN igeanbHOil piguHN, CYUinbHi NiHil — KONMMBaHHSAM
NO3A0OBXHBO 3MiLHEHOI UUIIHAPWUYHOI ODOOSMOHKM B HECKIHYEHHIN igeanbHoi
piovHW.

E
1175
E

2

B Ula,=0,10

>
T T T T ko
5 10 15 20

Puc. 1 — 3anexHicTb YacTOTHOro napameTpa

Bif, KiNbKOCTi N0300BXHiX pebep k1
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Puc. 2 — 3anexHicTb YacTOTHOro napameTpa
BiA napameTpa HEOQHOPIAHOCTI 3 B NO3A0BXHLOMY HaNPAMKY

0.55 —

0.35—

Puc. 3 — 3anexHicTb YacTOTHOro napameTpa
Big BUTpaTH pianHu

3 puUCYHKIB BWMOHO, WO HasBHICTb B'A3KOI pPigUHW MpPU3BOAUTL 10
3HWKEHHS1 3HAYeHHs1 BMAacHOI 4acTOTW KONUBaHb CUCTEMW Y MOPIBHAHHI 3
4aCTOTO KONMMBaHb CUCTEMM 3 ByOb-AKOH iHLIOK PiANHOLO.

Ak BuaHO 3 puc. 1, 3i 306iNblUEHHAM KiNbKOCTI MO3OQ0BXHIX pebep
3HaA4YeHHA YacTOTHOro napameTpa 36inbLIyeTbCA.

Mpw 36inbLeHHi NnapameTpa HEOAQHOPIOHOCTI B HANPSMKY YTBOPIOBAIbHOI
NiHiT 060NoHKK (pUC. 2) 3HAYEHHS YaCTOTHOro NnapameTpa 30inbLyeTbCs.
Kpim TOro, aHadeHHs 4acTOTHOrO napameTpa 30inblyeTbCA 3 NOCUNEHHSAM
OPTOTPOMHUX BMNACTUBOCTEN ULWMIHOPUYHOI OOOMOHKM | 3MeHLWyeTbca 3i
36inbLleHHAM BUTpaT pignHmn (puc. 3).

BucHoBkKn. HasBHICTb B'A3KOI PigMHWM NPU3BOAUTL [0 3HWKEHHS
3HaYeHHS BNacHOi YacTOTU KONMBaHb ODOSOHKU Y NMOPIBHSAHHI 3 4acTOTOHO i
KonMBaHb 3 OyOb-AKOK iHWOK piguHOK. [loka3aHO TakoX, WO  3i
30inbLUEHHAM KiNbKOCTi NO340BXHiX pebep 3Ha4YeHHsi YaCTOTHOro napameTpa
36inbwyeTbes. Kpim TOro, 3HayeHHs 4acToOTW KOMMBaHb 30inbLUyeTbCs 3
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NOCUMEHHSIM OPTOTPOMHUX BRACTUBOCTEN LMMIHAPUYHOT OOOMOHKM i 3MEH-
3MEeHLUYETBCS 3i 36iNbLUEHHAM BATPAT PignHN.

YK 539.3

H. N. Anusade

KONEBAHUA B XKWAKOCTU NPOAOIBHO I'IO.D,KF:EI'IHEHHVOVI
LUMNMMHAOPUYECKOU OBOJIOYKHU, 3ANOJIHEHHOWU BA3KOU
XNOKOCTbIO

Uccnepyrotca cBoGoaHble KonebGaHuMs B uaeanbHOM XXUMAKOCTU NPOAOSbHO
NOAKPENSIeHHOW OPTOTPOMHOW LMNMHAPUYECKOA OOONOYKM, 3anONHEHHOW BA3KOW
XUAKOCTLI0. [INA onucaHusi ABMXEHUSA BHYTPEHHEW BA3KOW XMAKOCTU MCMONb3yeTcA
NUuHeapu3oBaHHoe YypaBHeHue HaBbe — CTOKCa, ABMXKEHWE BHELIHEeN XWAOKOCTU
onucbiBaeTCcsi BOJNHOBbIM ypaBHEHUWEM, 3anvMcaHHbIM B MOTeHUuMarne CKOpocTeun
BO3MYLUEHHOTO TeyeHuss.. Ha ocHoBe npuHUMNA CTaLMOHApPHOCTU AEACTBUS
FamunbToHa — OcCTporpagckoro MOJIly4eHO YacTOTHOe YpaBHeHUMEe NpPoAoNbLHO
YNPOYHEHHOW OPTOTPOMHOM LIMITMHAPUYECKOW OGONMOYKU C BA3KOM XUAKOCTHIO,
KOHTaKTUpYKLLeN C uaeanbHOW XuAKocTbhl. lMocTpoeHbl xapakTepHble KpuBble
3aBUCUMOCTEMN.

Knroyesble cnoea: ce80600Hble KonebaHusi; oborodka;, udeasibHasi XUOKOCMb;
HarnpsKeHUSsT; KeCmKoCMb,; 8apuayuUoHHbIU MPUHYUIT.
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